Monday, May 20, 2024
HomeNanotechnologyProof and therapeutic implications of biomechanically regulated immunosurveillance in most cancers and...

Proof and therapeutic implications of biomechanically regulated immunosurveillance in most cancers and different ailments


  • Klotter, V. et al. Evaluation of pathologic enhance in liver stiffness permits earlier prognosis of CFLD: outcomes from a potential longitudinal cohort research. PLoS ONE 12, e0178784 (2017).

    Article 

    Google Scholar
     

  • Medrano, L. M. et al. Elevated liver stiffness is linked to elevated biomarkers of irritation and immune activation in HIV/hepatitis C virus-coinfected sufferers. AIDS 32, 1095–1105 (2018).

    Article 

    Google Scholar
     

  • Tomlin, H. & Piccinini, A. M. A posh interaction between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 155, 186–201 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Vidal, L. et al. Causal contributors to tissue stiffness and medical relevance in urology. Commun. Biol. 4, 1011 (2021).

    Article 

    Google Scholar
     

  • Mohammadi, H. & Sahai, E. Mechanisms and impression of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Du, H. et al. Tuning immunity via tissue mechanotransduction. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00761-w (2022).

  • Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, Okay. Mechanosensing via immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L. & Kam, L. C. Mechanosensing in T lymphocyte activation. Biophys. J. 102, L5–L7 (2012).

    Article 
    CAS 

    Google Scholar
     

  • O’Connor, R. S. et al. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189, 1330–1339 (2012).

    Article 

    Google Scholar
     

  • Saitakis, M. et al. Completely different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article 

    Google Scholar
     

  • Blumenthal, D., Chandra, V., Avery, L. & Burkhardt, J. Okay. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 9, e55995 (2020). Essential work that sheds mild on the mechanical side of dendritic cell-mediated activation of T cells.

    Article 
    CAS 

    Google Scholar
     

  • Basu, R. et al. Cytotoxic T cells use mechanical power to potentiate goal cell killing. Cell 165, 100–110 (2016). Seminal research that highlights the important position of mechanical forces in cytotoxic exercise of T cells.

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Cell softness prevents cytolytic T-cell killing of tumor-repopulating cells. Most cancers Res. 81, 476–488 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tello-Lafoz, M. et al. Cytotoxic lymphocytes goal attribute biophysical vulnerabilities in most cancers. Immunity 54, 1037–1054.e7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lei, Okay. et al. Most cancers-cell stiffening through ldl cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021). Influential research (refs. 14,15) that present that stiffening tumour cells via genetic manipulation concentrating on MRTF or by depleting ldl cholesterol of the cell membrane ends in greater vulnerabiliy to T-cell-mediated killing.

    Article 
    CAS 

    Google Scholar
     

  • Provenzano, P. P. et al. Collagen reorganization on the tumor-stromal interface facilitates native invasion. BMC Med. 4, 38 (2006).

    Article 

    Google Scholar
     

  • Levental, Okay. R. et al. Matrix crosslinking forces tumor development by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Goetz, J. G. et al. Biomechanical reworking of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Massagué, J. TGFβ in most cancers. Cell 134, 215–230 (2008).

    Article 

    Google Scholar
     

  • Insua‐Rodríguez, J. et al. Stress signaling in breast most cancers cells induces matrix elements that promote chemoresistant metastasis. EMBO Mol. Med. 10, e9003 (2018).

    Article 

    Google Scholar
     

  • He, X. et al. Extracellular matrix bodily properties govern the diffusion of nanoparticles in tumor microenvironment. Proc. Natl Acad. Sci. USA 120, e2209260120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Salmon, H. et al. Matrix structure defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Make investments. 122, 899–910 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Salnikov, A. V. et al. Decreasing of tumor interstitial fluid stress particularly augments efficacy of chemotherapy. FASEB J. 17, 1756–1758 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Plodinec, M. et al. The nanomechanical signature of breast most cancers. Nat. Nanotechnol. 7, 757–765 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y., McAndrews, Okay. M. & Kalluri, R. Medical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021). This overview presents the speculation that tumour cells regulate their mechanical properties all through their metastatic journey.

    Article 
    CAS 

    Google Scholar
     

  • Lv, J. et al. Cell softness regulates tumorigenicity and stemness of most cancers cells. EMBO J. 40, e106123 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, H. Okay. et al. Oncogenic signaling alters cell form and mechanics to facilitate cell division beneath confinement. Dev. Cell 52, 563–573.e3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Younger, Okay. M. et al. Correlating mechanical and gene expression information on the only cell stage to research metastatic phenotypes. iScience 26, 106393 (2023).

    Article 

    Google Scholar
     

  • Rianna, C., Radmacher, M. & Kumar, S. Direct proof that tumor cells soften when navigating confined areas. Mol. Biol. Cell 31, 1726–1734 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Regmi, S., Fu, A. & Luo, Okay. Q. Excessive shear stresses beneath train situation destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Moose, D. L. et al. Most cancers cells resist mechanical destruction in circulation through rhoa/actomyosin-dependent mechano-adaptation. Cell Rep. 30, 3864–3874.e6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Environment friendly extravasation of tumor-repopulating cells will depend on cell deformability. Sci. Rep. 6, 19304 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Saito, D. et al. Stiffness of primordial germ cells is required for his or her extravasation in avian embryos. iScience 25, 105629 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Er, E. E. et al. Pericyte-like spreading by disseminated most cancers cells prompts YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Z., Zhang, Y., Lin, Z., Shi, Okay. & Jiu, Y. Cytoskeleton—an important key in host cell for coronavirus an infection. J. Mol. Cell. Biol. 12, 968–979 (2021).

    Article 

    Google Scholar
     

  • Paluck, A. et al. Position of ARP2/3 complex-driven actin polymerization in RSV an infection. Pathogens 11, 26 (2021).

    Article 

    Google Scholar
     

  • Kubánková, M. et al. Bodily phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847 (2021).

    Article 

    Google Scholar
     

  • Yang, J., Barrila, J., Roland, Okay. L., Ott, C. M. & Nickerson, C. A. Physiological fluid shear alters the virulence potential of invasive multidrug-resistant non-typhoidal Salmonella typhimurium D23580. npj Microgravity 2, 16021 (2016).

    Article 

    Google Scholar
     

  • Padron, G. C. et al. Shear charge sensitizes bacterial pathogens to H2O2 stress. Proc. Natl Acad. Sci. USA 120, e2216774120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mikaty, G. et al. Extracellular bacterial pathogen induces host cell floor reorganization to withstand shear stress. PLoS Pathog. 5, e1000314 (2009).

    Article 

    Google Scholar
     

  • Kuo, C. et al. Rhinovirus an infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway easy muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L951–L957 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nagy, N. et al. Hyaluronan in immune dysregulation and autoimmune ailments. Matrix Biol. 78–79, 292–313 (2019).

    Article 

    Google Scholar
     

  • Fingleton, B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2036–2042 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wynn, T. A. Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 208, 1339–1350 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: present proof and future instructions. Nat. Rev. Cardiol. 18, 169–193 (2021).

    Article 

    Google Scholar
     

  • Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by sort 3 irritation. Sci. Immunol. 8, eadd8945 (2023).

    Article 
    CAS 

    Google Scholar
     

  • de Boer, R. A. et al. In the direction of higher definition, quantification and remedy of fibrosis in coronary heart failure. A scientific roadmap by the Committee of Translational Analysis of the Coronary heart Failure Affiliation (HFA) of the European Society of Cardiology. Eur. J. Coronary heart Fail. 21, 272–285 (2019).

    Article 

    Google Scholar
     

  • Liu, F. et al. Suggestions amplification of fibrosis via matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Georges, P. C. et al. Elevated stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147–G1154 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Inventory, Okay. F. et al. ARFI-based tissue elasticity quantification compared to histology for the prognosis of renal transplant fibrosis. Clin. Hemorheol. Microcirc. 46, 139–148 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gadd, V. L. et al. The portal inflammatory infiltrate and ductular response in human nonalcoholic fatty liver illness. Hepatology 59, 1393–1405 (2014).

    Article 

    Google Scholar
     

  • Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell decision. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Roman, M. J. et al. Arterial stiffness in power inflammatory ailments. Hypertension 46, 194–199 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue restore and fibrosis: the myofibroblast matrix. J. Pathol. 229, 298–309 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Mechanosignaling via YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344–L357 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Munger, J. S. et al. A mechanism for regulating pulmonary irritation and fibrosis: the integrin αvβ6 binds and prompts latent TGF β1. Cell 96, 319–328 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    Article 

    Google Scholar
     

  • Morvan, M. G. & Lanier, L. L. NK cells and most cancers: you’ll be able to train innate cells new methods. Nat. Rev. Most cancers 16, 7–19 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Janeway, C. A. How the immune system works to guard the host from an infection: a private view. Proc. Natl Acad. Sci. USA 98, 7461–7468 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Dustin, M. L. T-cell activation via immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Y., Zhao, X., White, A. Okay., Garcia, Okay. C. & Fordyce, P. M. A bead-based technique for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat. Strategies 19, 1295–1305 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mordechay, L. et al. Mechanical regulation of the cytotoxic exercise of pure killer cells. ACS Biomater. Sci. Eng. 7, 122–132 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lei, Okay., Kurum, A. & Tang, L. Mechanical immunoengineering of T cells for therapeutic functions. Acc. Chem. Res. 53, 2777–2790 (2020). Complete overview on latest advances in mechanical immunoengineering and their potential therapeutic functions.

    Article 
    CAS 

    Google Scholar
     

  • Seghir, R. & Arscott, S. Prolonged PDMS stiffness vary for versatile methods. Sens. Actuators Phys. 230, 33–39 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of dwelling tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article 

    Google Scholar
     

  • Denisin, A. Okay. & Pruitt, B. L. Tuning the vary of polyacrylamide gel stiffness for mechanobiology functions. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Geissmann, F. et al. Growth of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Most cancers 20, 107–124 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baratchi, S. et al. Transcatheter aortic valve implantation represents an anti-inflammatory remedy through discount of shear stress–induced, piezo-1–mediated monocyte activation. Circulation 142, 1092–1105 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Serafini, N. et al. The TRPM4 channel controls monocyte and macrophage, however not neutrophil, operate for survival in sepsis. J. Immunol. 189, 3689–3699 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Beningo, Okay. A. & Wang, Y. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the goal. J. Cell Sci. 115, 849–856 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Sosale, N. G. et al. Cell rigidity and form override CD47’s ‘self’-signaling in phagocytosis by hyperactivating myosin-II. Blood 125, 542–552 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Materials stiffness influences the polarization state, operate and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. Molecular power imaging reveals that integrin-dependent mechanical checkpoint regulates Fcγ-receptor-mediated phagocytosis in macrophages. Nano Lett. 23, 5562–5572 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Atcha, H. et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 12, 3256 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Geng, J. et al. TLR4 signalling through Piezo1 engages and enhances the macrophage mediated host response throughout bacterial an infection. Nat. Commun. 12, 3519 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dupont, S. et al. Position of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic most cancers cells. Oncogenesis 6, e352 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Oliver-De La Cruz, J. et al. Substrate mechanics controls adipogenesis via YAP phosphorylation by dictating cell spreading. Biomaterials 205, 64–80 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meli, V. S. et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci. Adv. 6, eabb8471 (2020).

  • Steinman, R. M. Selections about dendritic cells: previous, current, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Moreau, H. D. et al. Macropinocytosis overcomes directional bias in dendritic cells as a result of hydraulic resistance and facilitates area exploration. Dev. Cell 49, 171–188.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Laplaud, V. et al. Pinching the cortex of reside cells reveals thickness instabilities brought on by myosin II motors. Sci. Adv. 7, eabe3640 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barbier, L. et al. Myosin II exercise is selectively wanted for migration in extremely confined microenvironments in mature dendritic cells. Entrance. Immunol. 10, 747 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chabaud, M. et al. Cell migration and antigen seize are antagonistic processes coupled by myosin II in dendritic cells. Nat. Commun. 6, 7526 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Leithner, A. et al. Dendritic cell actin dynamics management contact length and priming effectivity on the immunological synapse. J. Cell Biol. 220, e202006081 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J.-H. et al. Biomechanical forces improve directed migration and activation of bone marrow-derived dendritic cells. Sci. Rep. 11, 12106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van den Dries, Okay. et al. Geometry sensing by dendritic cells dictates spatial group and PGE2-induced dissolution of podosomes. Cell. Mol. Life Sci. 69, 1889–1901 (2012).

    Article 

    Google Scholar
     

  • Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and performance. Cell Rep. 34, 108609 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mennens, S. F. B. et al. Substrate stiffness influences phenotype and performance of human antigen-presenting dendritic cells. Sci. Rep. 7, 17511 (2017).

    Article 

    Google Scholar
     

  • Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bufi, N. et al. Human main immune cells exhibit distinct mechanical properties which can be modified by irritation. Biophys. J. 108, 2181–2190 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Comrie, W. A., Babich, A. & Burkhardt, J. Okay. F-actin stream drives affinity maturation and spatial group of LFA-1 on the immunological synapse. J. Cell Biol. 208, 475–491 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Dendritic cell Piezo1 directs the differentiation of TH1 and Treg cells in most cancers. eLife 11, e79957 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Valignat, M.-P. et al. Lymphocytes can self-steer passively with wind vane uropods. Nat. Commun. 5, 5213 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Roy, N. H., MacKay, J. L., Robertson, T. F., Hammer, D. A. & Burkhardt, J. Okay. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci. Sign. 11, eaat3178 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hope, J. M. et al. Fluid shear stress enhances T cell activation via Piezo1. BMC Biol. 20, 61 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Husson, J., Chemin, Okay., Bohineust, A., Hivroz, C. & Henry, N. Power era upon T cell receptor engagement. PLoS ONE 6, e19680 (2011). A chic use of a biomembrane power probe method for measuring forces exerted by T cells upon engagement with antigen-presenting cells.

    Article 
    CAS 

    Google Scholar
     

  • Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide–MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thauland, T. J., Hu, Okay. H., Bruce, M. A. & Butte, M. J. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Sign. 10, eaah3737 (2017).

    Article 

    Google Scholar
     

  • Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell 57, 47–62.e9 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Majedi, F. S. et al. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 252, 120058 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. ZAP-70: a necessary kinase in T-cell signaling. Chilly Spring Harb. Perspect. Biol. 2, a002279 (2010).

    Article 

    Google Scholar
     

  • Bashour, Okay. T. et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Okay. H. & Butte, M. J. T cell activation requires power era. J. Cell Biol. 213, 535–542 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. DNA-based nanoparticle stress sensors reveal that T-cell receptors transmit outlined pN forces to their antigens for enhanced constancy. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tabdanov, E. et al. Micropatterning of TCR and LFA-1 ligands reveals complementary results on cytoskeleton mechanics in T cells. Integr. Biol. 7, 1272–1284 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Govendir, M. A. et al. T cell cytoskeletal forces form synapse topography for focused lysis through membrane curvature bias of perforin. Dev. Cell 57, 2237–2247.e8 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. S. et al. Mechanically energetic integrins goal lytic secretion on the immune synapse to facilitate mobile cytotoxicity. Nat. Commun. 13, 3222 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. S. C. et al. Innovative: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jin, W. et al. T cell activation and immune synapse group reply to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kumari, S. et al. Cytoskeletal stress actively sustains the migratory T‐cell synaptic contact. EMBO J. 39, e102783 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huby, R. D. J., Weiss, A. & Ley, S. C. Nocodazole inhibits sign transduction by the T cell antigen receptor. J. Biol. Chem. 273, 12024–12031 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Le Saux, G. et al. Nanoscale mechanosensing of pure killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 31, 1805954 (2019).

    Article 

    Google Scholar
     

  • Bhingardive, V. et al. Nanowire based mostly mechanostimulating platform for tunable activation of pure killer cells. Adv. Funct. Mater. 31, 2103063 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brumbaugh, Okay. M. et al. Purposeful position for Syk tyrosine kinase in pure killer cell-mediated pure cytotoxicity. J. Exp. Med. 186, 1965–1974 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Matalon, O. et al. Actin retrograde stream controls pure killer cell response by regulating the conformation state of SHP‐1. EMBO J. 37, e96264 (2018).

    Article 

    Google Scholar
     

  • Garrity, D., Name, M. E., Feng, J. & Wucherpfennig, Okay. W. The activating NKG2D receptor assembles within the membrane with two signaling dimers right into a hexameric construction. Proc. Natl Acad. Sci. USA 102, 7641–7646 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Friedman, D. et al. Pure killer cell immune synapse formation and cytotoxicity are managed by stress of the goal interface. J. Cell Sci. 134, jcs258570 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yanamandra, A. Okay. et al. PIEZO1-mediated mechanosensing governs NK cell killing effectivity in 3D. Preprint at https://doi.org/10.1101/2023.03.27.534435 (2023).

  • Wan, Z. et al. B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. J. Immunol. 190, 4661–4675 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Natkanski, E. et al. B cells use mechanical power to discriminate antigen affinities. Science 340, 1587–1590 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Merino-Cortés, S. V. et al. Diacylglycerol kinase ζ promotes actin cytoskeleton reworking and mechanical forces on the B cell immune synapse. Sci. Sign. 13, eaaw8214 (2020).

    Article 

    Google Scholar
     

  • Zeng, Y. et al. Substrate stiffness regulates B-cell activation, proliferation, class swap, and T-cell-independent antibody responses in vivo: Mobile immune response. Eur. J. Immunol. 45, 1621–1634 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nowosad, C. R., Spillane, Okay. M. & Tolar, P. Germinal heart B cells acknowledge antigen via a specialised immune synapse structure. Nat. Immunol. 17, 870–877 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, H. & Wang, S. Immune cells use energetic tugging forces to differentiate affinity and speed up evolution. Proc. Natl Acad. Sci. USA 120, e2213067120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Stanton, R. J. et al. HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of contaminated cells. Cell Host Microbe 16, 201–214 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pai, R. Okay., Convery, M., Hamilton, T. A., Growth, W. H. & Harding, C. V. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a possible mechanism for immune evasion. J. Immunol. 171, 175–184 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Samassa, F. et al. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell. Microbiol. 22, e13166 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hanč, P. et al. Construction of the complicated of F-actin and DNGR-1, a C-type lectin receptor concerned in dendritic cell cross-presentation of lifeless cell-associated antigens. Immunity 42, 839–849 (2015).

    Article 

    Google Scholar
     

  • Man, S. M. et al. Actin polymerization as a key innate immune effector mechanism to manage Salmonella an infection. Proc. Natl Acad. Sci. USA 111, 17588–17593 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jacobson, E. C. et al. Migration via a small pore disrupts inactive chromatin group in neutrophil-like cells. BMC Biol. 16, 142 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solis, A. G. et al. Mechanosensation of cyclical power by PIEZO1 is important for innate immunity. Nature 573, 69–74 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Robledo-Avila, F. H., Ruiz-Rosado, J., de, D., Brockman, Okay. L. & Partida-Sánchez, S. The TRPM2 ion channel regulates inflammatory capabilities of neutrophils throughout Listeria monocytogenes an infection. Entrance. Immunol. 11, 97 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meng, Okay. P., Majedi, F. S., Thauland, T. J. & Butte, M. J. Mechanosensing via YAP controls T cell activation and metabolism. J. Exp. Med. 217, e20200053 (2020). This research sheds mild on T cells sensing the mechanical alerts of their surroundings and tuning their response accordingly.

    Article 

    Google Scholar
     

  • Al-Aghbar, M. A., Jainarayanan, A. Okay., Dustin, M. L. & Roffler, S. R. The interaction between membrane topology and mechanical forces in regulating T cell receptor exercise. Commun. Biol. 5, 40 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wong, V. W. et al. Mechanical power prolongs acute irritation through T‐cell‐dependent pathways throughout scar formation. FASEB J. 25, 4498–4510 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article 

    Google Scholar
     

  • O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Most cancers immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article 

    Google Scholar
     

  • Dustin, M. L. & Lengthy, E. O. Cytotoxic immunological synapses: NK and CTL synapses. Immunol. Rev. 235, 24–34 (2010).

    Article 
    CAS 

    Google Scholar
     

  • González-Granado, J. M. et al. Nuclear envelope lamin-A {couples} actin dynamics with immunological synapse structure and T cell activation. Sci. Sign. 7, ra37 (2014).

    Article 

    Google Scholar
     

  • González, C. et al. Nanobody-CD16 catch bond reveals NK cell mechanosensitivity. Biophys. J. 116, 1516–1526 (2019).

    Article 

    Google Scholar
     

  • Fan, J. et al. NKG2D discriminates numerous ligands via selectively mechano‐regulated ligand conformational modifications. EMBO J. 41, e107739 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tsopoulidis, N. et al. T cell receptor–triggered nuclear actin community formation drives CD4+ T cell effector capabilities. Sci. Immunol. 4, eaav1987 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tamzalit, F. et al. Interfacial actin protrusions mechanically improve killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez, E. E. et al. Apoptotic contraction drives goal cell launch by cytotoxic T cells. Nat. Immunol. https://doi.org/10.1038/s41590-023-01572-4 (2023).

  • Händel, C. et al. Cell membrane softening in human breast and cervical most cancers cells. N. J. Phys. 17, 083008 (2015).

    Article 

    Google Scholar
     

  • Huang, B., Music, B. & Xu, C. Ldl cholesterol metabolism in most cancers: mechanisms and therapeutic alternatives. Nat. Metab. 2, 132–141 (2020).

    Article 

    Google Scholar
     

  • Hanna, R. N. et al. Patrolling monocytes management tumor metastasis to the lung. Science 350, 985–990 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vyas, M. et al. Pure killer cells suppress most cancers metastasis by eliminating circulating most cancers cells. Entrance. Immunol. 13, 1098445 (2023).

    Article 

    Google Scholar
     

  • Hu, B., Xin, Y., Hu, G., Li, Okay. & Tan, Y. Fluid shear stress enhances pure killer cell’s cytotoxicity towards circulating tumor cells via NKG2D-mediated mechanosensing. APL Bioeng. 7, 036108 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Boussommier-Calleja, A. et al. The results of monocytes on tumor cell extravasation in a 3D vascularized microfluidic mannequin. Biomaterials 198, 180–193 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Soderquest, Okay. et al. Monocytes management pure killer cell differentiation to effector phenotypes. Blood 117, 4511–4518 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell growth, localization, and performance all through life. Immunity 48, 202–213 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Surcel, A. et al. Pharmacological activation of myosin II paralogs to right cell mechanics defects. Proc. Natl Acad. Sci. USA 112, 1428–1433 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mittelheisser, V. et al. Optimum physicochemical properties of antibody–nanoparticle conjugates for improved tumor concentrating on. Adv. Mater. 34, 2110305 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).

    Article 

    Google Scholar
     

  • Liang, Q. et al. The softness of tumour-cell-derived microparticles regulates their drug-delivery effectivity. Nat. Biomed. Eng. 3, 729–740 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Nanoparticle-mediated particular elimination of soppy most cancers stem cells by concentrating on low cell stiffness. Acta Biomater. 135, 493–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez, J. E. et al. Transient cell stiffening triggered by magnetic nanoparticle publicity. J. Nanobiotechnol. 19, 117 (2021).

    CAS 

    Google Scholar
     

  • Liu, Y. X. et al. Single-cell mechanics supplies an efficient means to probe in vivo interactions between alveolar macrophages and silver nanoparticles. J. Phys. Chem. B 119, 15118–15129 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for efficient remedy. Nat. Med. 24, 541–550 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hartmann, N. et al. Prevailing position of contact steering in intrastromal T-cell trapping in human pancreatic most cancers. Clin. Most cancers Res. 20, 3422–3433 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kuczek, D. E. et al. Collagen density regulates the exercise of tumor-infiltrating T cells. J. Immunother. Most cancers 7, 68 (2019).

    Article 

    Google Scholar
     

  • Solar, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Di Martino, J. S. et al. A tumor-derived sort III collagen-rich ECM area of interest regulates tumor cell dormancy. Nat. Most cancers 3, 90–107 (2021).

    Article 

    Google Scholar
     

  • Lampi, M. C. & Reinhart-King, C. A. Focusing on extracellular matrix stiffness to attenuate illness: from molecular mechanisms to medical trials. Sci. Transl. Med. 10, eaao0475 (2018).

    Article 

    Google Scholar
     

  • Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. Okay. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Van Cutsem, E. et al. Randomized section III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for sufferers with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article 

    Google Scholar
     

  • Provenzano, P. P. et al. Enzymatic concentrating on of the stroma ablates bodily boundaries to remedy of pancreatic ductal adenocarcinoma. Most cancers Cell 21, 418–429 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. et al. Tumor microenvironment‐activatable nanoenzymes for mechanical reworking of extracellular matrix and enhanced tumor chemotherapy. Adv. Funct. Mater. 31, 2007544 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor exercise of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in dwelling animals. Nature 430, 873–877 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Meng, D. et al. In situ activated NK cell as bio‐orthogonal focused reside‐cell nanocarrier augmented strong tumor immunotherapy. Adv. Funct. Mater. 32, 2202603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Bioorthogonal equipping CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced strong tumor immunotherapy. ACS Cent. Sci. 8, 603–614 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saatci, O. et al. Focusing on lysyl oxidase (LOX) overcomes chemotherapy resistance in triple detrimental breast most cancers. Nat. Commun. 11, 2416 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nicolas-Boluda, A. et al. Tumor stiffening reversion via collagen crosslinking inhibition improves T cell migration and anti-PD-1 remedy. eLife 10, e58688 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Vita, A. et al. Lysyl oxidase engineered lipid nanovesicles for the remedy of triple detrimental breast most cancers. Sci. Rep. 11, 5107 (2021).

    Article 

    Google Scholar
     

  • Kim, H. Y. et al. Detection of lysyl oxidase exercise in tumor extracellular matrix utilizing peptide-functionalized gold nanoprobes. Cancers 13, 4523 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kanapathipillai, M. et al. Inhibition of mammary tumor development utilizing lysyl oxidase-targeting nanoparticles to change extracellular matrix. Nano Lett. 12, 3213–3217 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Vennin, C. et al. Transient tissue priming through ROCK inhibition uncouples pancreatic most cancers development, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017). A compelling demonstration that altering the mechanical options of the tumour surroundings holds nice potential for enhancing therapies.

    Article 

    Google Scholar
     

  • Murphy, Okay. J. et al. Intravital imaging expertise guides FAK-mediated priming in pancreatic most cancers precision drugs in accordance with Merlin standing. Sci. Adv. 7, eabh0363 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tran, E. et al. Immune concentrating on of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L.-C. S. et al. Focusing on fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor development and increase host immunity with out extreme toxicity. Most cancers Immunol. Res. 2, 154–166 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to deal with cardiac harm. Science 375, 91–96 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast most cancers dormancy. Nature 594, 566–571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow ends in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fujimori, Okay., Covell, D. G., Fletcher, J. E. & Weinstein, J. N. Modeling evaluation of the worldwide and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Most cancers Res. 49, 5656–5663 (1989).

    CAS 

    Google Scholar
     

  • Tabdanov, E. D. et al. Engineering T cells to reinforce 3D migration via structurally and mechanically complicated tumor microenvironments. Nat. Commun. 12, 2815 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Whitlock, B. Enhancing Cytotoxic T Cell Killing by PTEN Depletion (Weill Cornell Drugs, 2018).

  • Li, R., Ma, C., Cai, H. & Chen, W. The CAR T‐cell mechanoimmunology at a look. Adv. Sci. 7, 2002628 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chockley, P. J., Ibanez-Vega, J., Krenciute, G., Talbot, L. J. & Gottschalk, S. Synapse-tuned CARs improve immune cell anti-tumor exercise. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01650-2 (2023). This research exhibits that enhancing the immunological synapse structure of CAR-NK cells results in superior therapeutic efficacy.

  • Roybal, Okay. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, W. R. et al. Mechanical allostery: proof for a power requirement within the proteolytic activation of notch. Dev. Cell 33, 729–736 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sloas, D. C., Tran, J. C., Marzilli, A. M. & Ngo, J. T. Rigidity-tuned receptors for artificial mechanotransduction and intercellular power detection. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01638-y (2023).

  • Mittelheisser, V. et al. Leveraging immunotherapy with nanomedicine. Adv. Ther. 3, 2000134 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perica, Okay. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor exercise. ACS Nano 8, 2252–2260 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Majedi, F. S. et al. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett. 19, 6945–6954 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vis, B. et al. Ultrasmall silica nanoparticles instantly ligate the T cell receptor complicated. Proc. Natl Acad. Sci. USA 117, 285–291 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Okay.-S. et al. Cationic nanoparticle-mediated activation of pure killer cells for efficient most cancers immunotherapy. ACS Appl. Mater. Interfaces 12, 56731–56740 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sim, T. et al. Magneto-activation and magnetic resonance imaging of pure killer cells labeled with magnetic nanocomplexes for the remedy of strong tumors. ACS Nano 15, 12780–12793 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in dwelling cells. Nat. Strategies 13, 143–146 (2016).

    Article 

    Google Scholar
     

  • Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Chen, X. & Yang, Y. Spatiotemporal management of gene expression by a light-switchable transgene system. Nat. Strategies 9, 266–269 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. Mechanogenetics for the distant and noninvasive management of most cancers immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    Article 
    CAS 

    Google Scholar
     

  • González-Bermúdez, B., Guinea, G. V. & Plaza, G. R. Advances in micropipette aspiration: functions in cell biomechanics, fashions, and prolonged research. Biophys. J. 116, 587–594 (2019).

    Article 

    Google Scholar
     

  • Otto, O. et al. Actual-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Strategies 12, 199–202 (2015). Introduction of the state-of-the-art and high-throughput RT-DC expertise for measuring the mechanical properties of cells.

    Article 
    CAS 

    Google Scholar
     

  • Gerum, R. et al. Viscoelastic properties of suspended cells measured with shear stream deformation cytometry. eLife 11, e78823 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sánchez-Iranzo, H., Bevilacqua, C., Diz-Muñoz, A. & Prevedel, R. A 3D Brillouin microscopy dataset of the in-vivo zebrafish eye. Knowledge Temporary. 30, 105427 (2020).

    Article 

    Google Scholar
     

  • Conrad, C., Grey, Okay. M., Stroka, Okay. M., Rizvi, I. & Scarcelli, G. Mechanical characterization of 3D ovarian most cancers nodules utilizing Brillouin confocal microscopy. Cell. Mol. Bioeng. 12, 215–226 (2019).

    Article 

    Google Scholar
     

  • Wu, P.-H. et al. Particle monitoring microrheology of most cancers cells in dwelling topics. Mater. In the present day 39, 98–109 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Falchuk, Okay. & Berliner, R. Hydrostatic pressures in peritubular capillaries and tubules within the rat kidney. Am. J. Physiol. 220, 1422–1426 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Petrie, R. J. & Koo, H. Direct measurement of intracellular stress. Curr. Protoc. Cell Biol. 63, (2014).

  • Harlepp, S., Thalmann, F., Follain, G. & Goetz, J. G. Hemodynamic forces will be precisely measured in vivo with optical tweezers. Mol. Biol. Cell 28, 3252–3260 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate physique axis elongation. Nature 561, 401–405 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mongera, A. et al. Mechanics of the mobile microenvironment as probed by cells in vivo throughout zebrafish presomitic mesoderm differentiation. Nat. Mater. 22, 135–143 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vorselen, D. et al. Microparticle traction power microscopy reveals subcellular power exertion patterns in immune cell–goal interactions. Nat. Commun. 11, 20 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence power transfer-based mechanical stress sensor for particular proteins in situ: mechanical stress sensor. FEBS J. 275, 3072–3087 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Grashoff, C. et al. Measuring mechanical stress throughout vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical stress throughout VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pan, X. et al. Evaluation of most cancers cell migration utilizing a viscosity-sensitive fluorescent probe. Chem. Commun. 58, 4663–4666 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shimolina, L. E. et al. Imaging tumor microscopic viscosity in vivo utilizing molecular rotors. Sci. Rep. 7, 41097 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sack, I. Magnetic resonance elastography from basic soft-tissue mechanics to diagnostic imaging. Nat. Rev. Phys. 5, 25–42 (2022).

    Article 

    Google Scholar
     

  • Soteriou, D. et al. Speedy single-cell bodily phenotyping of mechanically dissociated tissue biopsies. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01015-3 (2023).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments