Sunday, May 26, 2024
HomeNanotechnologyMultimodal nanoimmunotherapy engages neutrophils to get rid of Staphylococcus aureus infections

Multimodal nanoimmunotherapy engages neutrophils to get rid of Staphylococcus aureus infections


  • Antimicrobial Resistance and Major Well being Care (World Well being Group, 2018).

  • Tacconelli, E. et al. Discovery, analysis, and improvement of latest antibiotics: the WHO precedence checklist of antibiotic-resistant micro organism and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, S. L. & Oliver, Okay. B. Antibiotic resistance threats in america: stepping again from the brink. Am. Fam. Doctor 89, 938–941 (2014).

    PubMed 

    Google Scholar
     

  • Daum, R. S. Medical apply. Pores and skin and soft-tissue infections attributable to methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 357, 380–390 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeLeo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Neighborhood-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLeo, F. R. & Chambers, H. F. Reemergence of antibiotic-resistant Staphylococcus aureus within the genomics period. J. Clin. Make investments. 119, 2464–2474 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, E., Smith, D. L. & Laxminarayan, R. Hospitalizations and deaths attributable to methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis. 13, 1840–1846 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antibiotic Resistance Threats in america, 2019 (US Division of Well being and Human Providers, Centres for Illness Management and Prevention, 2019).

  • Piddock, L. J. The disaster of no new antibiotics—what’s the manner ahead? Lancet Infect. Dis. 12, 249–253 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol Rev. 24, 71–109 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2021 Antibacterial Brokers in Medical and Preclinical Growth: An Overview and Evaluation (World Well being Group, 2022).

  • Hou, X. et al. Vitamin lipid nanoparticles allow adoptive macrophage switch for the remedy of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deresinski, S. & Herrera, V. Immunotherapies for Staphylococcus aureus: present challenges and future prospects. Infect. Management Hospital Epidemiol. 31, S45–S47 (2010).

    Article 

    Google Scholar
     

  • Schaffer, A. C. & Lee, J. C. Vaccination and passive immunisation in opposition to Staphylococcus aureus. Int. J. Antimicrob. Brokers 32, S71–S78 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, S. D. & DeLeo, F. R. A MRSA-terious enemy amongst us: boosting MRSA vaccines. Nat. Med. 17, 168–169 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amulic, B., Cazalet, C., Hayes, G. L., Metzler, Okay. D. & Zychlinsky, A. Neutrophil perform: from mechanisms to illness. Annu. Rev. Immunol. 30, 459–489 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, J. et al. Neutrophil-mediated anticancer drug supply for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Barca, E., Carratala, J., Mykietiuk, A., Fernandez-Sevilla, A. & Gudiol, F. Predisposing elements and final result of Staphylococcus aureus bacteremia in neutropenic sufferers with most cancers. Eur. J. Clin. Microbiol. Infect. Dis. 20, 117–119 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakshman, R. & Finn, A. Neutrophil issues and their administration. J. Clin. Pathol. 54, 7–19 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouma, G., Ancliff, P. J., Thrasher, A. J. & Burns, S. O. Latest advances within the understanding of genetic defects of neutrophil quantity and performance. Br. J. Haematol. 151, 312–326 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, T. & Sullivan, Okay. E. Infections in sufferers with inherited defects in phagocytic perform. Clin. Microbiol. Rev. 16, 597–621 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antibacterial Merchandise in Medical Growth for Precedence Pathogens (World Well being Group, 2021); https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens

  • Liu, C.-I. et al. A ldl cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319, 1391–1394 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence by means of its antioxidant exercise. J. Exp. Med. 202, 209–215 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shatalin, Okay., Shatalina, E., Mironov, A. & Nudler, E. H2S: a common protection in opposition to antibiotics in micro organism. Science 334, 986–990 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shatalin, Okay. et al. Inhibitors of bacterial H2S biogenesis focusing on antibiotic resistance and tolerance. Science 372, 1169–1175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, F. E., Borgogna, T. R., Patel, D. M., Sward, E. W. & Voyich, J. M. Epic immune battles of historical past: neutrophils vs. Staphylococcus aureus. Entrance. Cell. Infect. Microbiol. 7, 286 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rooijakkers, S. H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simmen, H.-P. & Blaser, J. Evaluation of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid within the presence or absence of bacterial an infection throughout and after stomach surgical procedure. Am. J. Surg. 166, 24–27 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartlett, J. G. & Finegold, S. M. Anaerobic infections of the lung and pleural house. Am. Rev. Respir. Dis. 110, 56–77 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • McGovern, N. N. et al. Hypoxia selectively inhibits respiratory burst exercise and killing of Staphylococcus aureus in human neutrophils. J. Immunol. 186, 453–463 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, F. et al. Small-molecule focusing on of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12, 174–179 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krute, C. N., Ridder, M. J., Seawell, N. A. & Bose, J. L. Inactivation of the exogenous fatty acid utilization pathway results in elevated resistance to unsaturated fatty acids in Staphylococcus aureus. Microbiology 165, 197 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari, Okay. B., Gatto, C. & Wilkinson, B. J. Plasticity of coagulase-negative staphylococcal membrane fatty acid composition and implications for responses to antimicrobial brokers. Antibiotics 9, 214 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beavers, W. N. et al. Arachidonic acid kills Staphylococcus aureus by means of a lipid peroxidation mechanism. mBio https://doi.org/10.1128/mbio.01333-19 (2019).

  • Reeder, B. J. & Wilson, M. T. Hemoglobin and myoglobin related oxidative stress: from molecular mechanisms to illness states. Curr. Med. Chem. 12, 2741–2751 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alayash, A. I. Oxygen therapeutics: can we tame haemoglobin? Nat. Rev. Drug Discov. 3, 152–159 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitvitsky, V. et al. Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the destiny of polysulfide merchandise. J. Biol. Chem. 292, 5584–5592 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitvitsky, V., Yadav, P. Okay., Kurthen, A. & Banerjee, R. Sulfide oxidation by a noncanonical pathway in purple blood cells generates thiosulfate and polysulfides. J. Biol. Chem. 290, 8310–8320 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutaud, O. et al. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl Acad. Sci. USA 107, 2699–2704 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alayash, A. I. Hemoglobin-based blood substitutes: oxygen carriers, pressor brokers, or oxidants? Nat. Biotechnol. 17, 545–549 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: manufacturing, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katikaneni, A. et al. Lipid peroxidation regulates long-range wound detection by means of 5-lipoxygenase in zebrafish. Nat. Cell Biol. 22, 1049–1055 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rummer, J. L., McKenzie, D. J., Innocenti, A., Supuran, C. T. & Brauner, C. J. Root impact hemoglobin might have developed to boost basic tissue oxygen supply. Science 340, 1327–1329 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hochmuth, R., Evans, C., Wiles, H. & McCown, J. Mechanical measurement of purple cell membrane thickness. Science 220, 101–102 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic supply platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial irritation and alleviate joint harm in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, J. et al. Bioinspired nanoparticles with NIR‐managed drug launch for synergetic chemophotothermal remedy of metastatic breast most cancers. Adv. Funct. Mater. 26, 7495–7506 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, A. et al. Micro organism-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial an infection detection and inhibition. ACS Nano 13, 13965–13984 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: almost a century of intrigue. Toxins 5, 1140–1166 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clauditz, A., Resch, A., Wieland, Okay.-P., Peschel, A. & Götz, F. Staphyloxanthin performs a job within the health of Staphylococcus aureus and its skill to deal with oxidative stress. Infect. Immun. 74, 4950–4953 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, M. et al. A TICT-based fluorescent probe for speedy and particular detection of hydrogen sulfide and its bio-imaging purposes. Chem. Commun. 52, 6415–6418 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Balaban, N. Q. et al. Definitions and pointers for analysis on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4, 556–562 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, Okay. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allison, Okay. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a continual biofilm an infection. Nature 503, 365–370 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a standard reason for persistent infections. Science 284, 1318–1322 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaible, B., Taylor, C. T. & Schaffer, Okay. Hypoxia will increase antibiotic resistance in Pseudomonas aeruginosa by means of altering the composition of multidrug efflux pumps. Antimicrob. Brokers Chemother. 56, 2114–2118 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meredith, H. R., Srimani, J. Okay., Lee, A. J., Lopatkin, A. J. & You, L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol. 11, 182–188 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everse, J. & Hsia, N. The toxicities of native and modified hemoglobins. Free Radic. Biol. Med. 22, 1075–1099 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and performance in well being and irritation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Payne, J. A. et al. Antibiotic-chemoattractants improve neutrophil clearance of Staphylococcus aureus. Nat. Commun. 12, 6157 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, M. T., Ammons, M. C. B. & DeLeo, F. R. The increasing position of NADPH oxidases in well being and illness: now not simply brokers of demise and destruction. Clin. Sci. 111, 1–20 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Luo, B. et al. Phagocyte respiratory burst prompts macrophage erythropoietin signalling to advertise acute irritation decision. Nat. Commun. 7, 12177 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches in opposition to bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 532–547 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azzopardi, E. A., Ferguson, E. L. & Thomas, D. W. The improved permeability retention impact: a brand new paradigm for drug focusing on in an infection. J. Antimicrob. Chemother. 68, 257–274 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, M. et al. A twin‐responsive antibiotic‐loaded nanoparticle particularly binds pathogens and overcomes antimicrobial‐resistant infections. Adv. Mater. 33, e2006772 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thorn, C. R., Thomas, N., Boyd, B. J. & Prestidge, C. A. Nano-fats for bugs: the advantages of lipid nanoparticles for antimicrobial remedy. Drug Deliv. Transl. Res. 11, 1598–1624 (2021).

    CAS 

    Google Scholar
     

  • Lakshminarayanan, R., Ye, E., Younger, D. J., Li, Z. & Loh, X. J. Latest advances within the improvement of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater. 7, 1701400 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Hu, C. & Shao, L. The antimicrobial exercise of nanoparticles: current scenario and prospects for the longer term. Int. J. Nanomed. 12, 1227 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fenaroli, F. et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse fashions. ACS Nano 12, 8646–8661 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Repenko, T. et al. Bio-degradable extremely fluorescent conjugated polymer nanoparticles for bio-medical imaging purposes. Nat. Commun. 8, 470 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils within the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selsted, M. E. & Ouellette, A. J. Mammalian defensins within the antimicrobial immune response. Nat. Immunol. 6, 551–557 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. PD-1 expression by macrophages performs a pathologic position in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl Acad. Sci. USA 106, 6303–6308 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klebanoff, S. J. Myeloperoxidase: good friend and foe. J. Leukoc. Biol. 77, 598–625 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to advertise immune cell demise. Science 342, 863–866 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myles, I. A. et al. Signaling through the IL-20 receptor inhibits cutaneous manufacturing of IL-1β and IL-17A to advertise an infection with methicillin-resistant Staphylococcus aureus. Nat. Immunol. 14, 804–811 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmaler, M., Jann, N. J., Ferracin, F. & Landmann, R. T and B cells aren’t required for clearing Staphylococcus aureus in systemic an infection regardless of a robust TLR2–MyD88-dependent T cell activation. J. Immunol. 186, 443–452 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X., Zou, L. & Holmgren, A. Concentrating on bacterial antioxidant techniques for antibiotics improvement. Curr. Med. Chem. 27, 1922–1939 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harbut, M. B. et al. Auranofin exerts broad-spectrum bactericidal actions by focusing on thiol-redox homeostasis. Proc. Natl Acad. Sci. USA 112, 4453–4458 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism focusing on micro organism missing glutathione. FASEB J. 27, 1394–1403 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luk, B. T. et al. Interfacial interactions between pure RBC membranes and artificial polymeric nanoparticles. Nanoscale 6, 2730–2737 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, W. et al. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke remedy. ACS Nano 12, 5417–5426 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corridor, G. S. Bailey & Scott’s Diagnostic Microbiology, thirteenth edn. Laboratory Medication 44, e138–e139 (2013).

  • Peng, B. et al. Fluorescent probes based mostly on nucleophilic substitution–cyclization for hydrogen sulfide detection and bioimaging. Chem.–A Eur. J. 20, 1010–1016 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 1–23 (2018).


    Google Scholar
     

  • Kim, W. et al. A brand new class of artificial retinoid antibiotics efficient in opposition to bacterial persisters. Nature 556, 103–107 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Rising and analyzing static biofilms. Curr. Protoc. Microbiol. 22, 1B.1.1–1B.1.18 (2011).

    Article 

    Google Scholar
     

  • Lu, M. et al. Micro organism-specific phototoxic reactions triggered by blue mild and phytochemical carvacrol. Sci. Transl. Med. 13, eaba3571 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drummen, G. P., van Liebergen, L. C., den Kamp, J. A. O. & Put up, J. A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33, 473–490 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monogue, M. L., Thabit, A. Okay., Hamada, Y. & Nicolau, D. P. Antibacterial efficacy of eravacycline in vivo in opposition to Gram-positive and Gram-negative organisms. Antimicrob. Brokers Chemother. 60, 5001–5005 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, E. M. et al. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat. Microbiol. 4, 1680–1691 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, A., Accorsi, A., Rhee, Y. & Girgenrath, M. Do’s and don’ts within the preparation of muscle cryosections for histological evaluation. J. Vis. Exp. 15, e52793 (2015).


    Google Scholar
     

  • Ye, M. et al. pH‐responsive polymer–drug conjugate: an efficient technique to fight the antimicrobial resistance. Adv. Funct. Mater. 30, 2002655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the exercise of ADAM10 to trigger deadly an infection in mice. Nat. Med. 17, 1310–1314 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, L. et al. Evaluation of an anti-α-toxin monoclonal antibody for prevention and remedy of Staphylococcus aureus-induced pneumonia. Antimicrob. Brokers Chemother. 58, 1108–1117 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortin, L. I. et al. Speedy bactericidal exercise of daptomycin in opposition to methicillin-resistant and methicillin-susceptible Staphylococcus aureus peritonitis in mice as measured with bioluminescent micro organism. Antimicrob. Brokers Chemother. 51, 1787–1794 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surewaard, B. G. et al. Identification and remedy of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wozniak, J. M. et al. Mortality threat profiling of Staphylococcus aureus bacteremia by multi-omic serum evaluation reveals early predictive and pathogenic signatures. Cell 182, 1311–1327. e1314 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments