Saturday, June 22, 2024
HomeNanotechnologyBimodal DNA self-origami materials with nucleic acid perform enhancement | Journal of...

Bimodal DNA self-origami materials with nucleic acid perform enhancement | Journal of Nanobiotechnology


  • Madhanagopal BR, Zhang S, Demirel E, Wady H, Chandrasekaran AR. DNA nanocarriers: programmed to ship. Developments Biochem Sci. 2018;43:997–1013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou M, Liu N, Zhang Q, Tian T, Ma Q, Zhang T, Cai X. Impact of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 2019;52: e12566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang T, Tian T, Zhou R, Li S, Ma W, Zhang Y, Liu N, Shi S, Li Q, Xie X, Ge Y, Liu M, Zhang Q, Lin S, Cai X, Lin Y. Design, fabrication and functions of tetrahedral DNA nanostructure-based multifunctional complexes in drug supply and biomedical remedy. Nat Protoc. 2020;15:2728–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran BT, Kim J, Ahn DR. Systemic supply of aptamer-drug conjugates for most cancers remedy utilizing enzymatically generated self-assembled DNA nanoparticles. Nanoscale. 2020;12:22945–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin JO, Kim H, Huh YH, Herrmann A, Kwak M. Gentle matter DNA nanoparticles hybridized with CpG motifs and peptide nucleic acids allow immunological remedy of most cancers. J Management Launch. 2019;315:76–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Narayana A, Patel S, Sahay G. Advances in intracellular supply via supramolecular self-assembly of oligonucleotides and peptides. Theranostics. 2019;9:3191–212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D. Double rolling circle amplification generates bodily cross-linked DNA community for stem cell fishing. J Am Chem Soc. 2020;142:3422–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. T lymphocyte-captured DNA community for localized immunotherapy. J Am Chem Soc. 2021;143:19330–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merindol R, Delechiave G, Heinen L, Catalani LH, Walther A. Modular design of programmable Mechanofluorescent DNA hydrogels. Nat Commun. 2019;10:528.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Y, Combs JD, Cao C, Weeks ER, Bazrafshan A, Rashid SA, Salaita Ok. Supramolecular DNA photonic hydrogels for on-demand management of coloration with excessive spatial and temporal decision. Nano Lett. 2021;21:9958–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan X, Yang B, Chen Y, Music Y, Ye J, Pan Y, Zhou B, Wang Y, Mao F, Dong Y, Liu D, Yu J. Anti-friction MSCs supply system improves the remedy for extreme osteoarthritis. Adv Mater. 2021;33: e2104758.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang L, Abdullah R, Hu X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Solar Y, Zhang X, Tan W. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers by way of the incorporation of a man-made sandwich base. J Am Chem Soc. 2019;141:4282–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim N, Kim E, Kim H, Thomas MR, Najer A, Stevens MM. Tumor-targeting cholesterol-decorated DNA nanoflowers for intracellular ratiometric Aptasensing. Adv Mater. 2021;33: e2007738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei L, Zhu G, Qiu L, Wu C, Chen H, Liang H, Cansiz S, Lv Y, Zhang X, Tan W. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in focused anticancer drug supply. Nano Res. 2015;8:3447–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubbe AS, Liu Q, Smith SJ, de Vries JW, Kistemaker JCM, de Vries AH, Faustino I, Meng Z, Szymanski W, Herrmann A, Feringa BL. Photoswitching of DNA hybridization utilizing a molecular motor. J Am Chem Soc. 2018;140:5069–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chen X, Kang G, Peng R, Pan V, Sundaresan R, Wang P, Ke Y. Programming DNA tube circumference by tile offset connection. J Am Chem Soc. 2019;141:19529–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang C, Lu B, Zhang W, Ohayon YP, Feng F, Li S, Seeman NC, Xiao SJ. Regulation of 2D DNA nanostructures by the coupling of intrinsic tile curvature and arm twist. J Am Chem Soc. 2022;144:6759–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scherf M, Scheffler F, Maffeo C, Kemper U, Ye J, Aksimentiev A, Seidel R, Reibetanz U. Trapping of protein cargo molecules inside DNA origami nanocages. Nanoscale. 2022;14:18041–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kacherovsky N, Cardle II, Cheng EL, Yu JL, Baldwin ML, Salipante SJ, Jensen MC, Pun SH. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell remedy. Nat Biomed Eng. 2019;3:783–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Yu J, Lan W, Yang S, Wang S, Mi Y, Ye Q, Li Y, Liu Y. Novel secure DNA nanoscale materials and its utility on particular enrichment of DNA. ACS Appl Mater Interfaces. 2020;12:19834–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y. Biomimetic Nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and focused cytotoxicity for HER2-positive breast most cancers. Adv Mater. 2022;34: e2109609.

    Article 
    PubMed 

    Google Scholar
     

  • Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan WD. DNA nanoflowers for multiplexed mobile imaging and traceable focused drug supply. Angew Chem Int Ed Engl. 2014;53:5821–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Y, Hu R, Zhu G, Zhang X, Mei L, Liu Q, Qiu L, Wu C, Tan W. Preparation and biomedical functions of programmable and multifunctional DNA nanoflowers. Nat Protoc. 2015;10:1508–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker YR, Yuan L, Chen J, Belle R, Carlisle R, El-Sagheer AH, Brown T. Increasing the chemical performance of DNA nanomaterials generated by rolling circle amplification. Nucleic Acids Res. 2021;49:9042–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wang J, Huang F, Zhang Y, Zheng M. DNA-directed coimmobilization of a number of enzymes on organic-inorganic hybrid DNA flowers. Entrance Bioeng Biotechnol. 2022;10: 951394.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Chen P, Khan IM, Wang Z, Zhang Y, Ma X. Fluorescence-Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. J Mater Chem B. 2022;10:571–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu G, Hu R, Zhao Z, Chen Z, Zhang X, Tan W. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical functions. J Am Chem Soc. 2013;135:16438–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Yang L, Xie L, Shang J, He S, Liu J, Wang F. Modular meeting of a concatenated DNA circuit for in vivo amplified Aptasensing. Small. 2022;18: e2200983.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang Q, Zhao S, Liu J, Music L, Wang ZG, Ding B. Rationally designed DNA-based nanocarriers. Adv Drug Deliv Rev. 2019;147:2–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang Q, Liu Ok, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Mind-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and Rutin for synergistic remedy of Alzheimer’s illness. Small. 2022;18: e2107534.

    Article 
    PubMed 

    Google Scholar
     

  • Baker YR, Chen J, Brown J, El-Sagheer AH, Wiseman P, Johnson E, Goddard P, Brown T. Preparation and characterization of manganese, cobalt and zinc DNA nanoflowers with tuneable morphology, DNA content material and measurement. Nucleic Acids Res. 2018;46:7495–505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JS, Kim H, Jo C, Jeong J, Ko J, Han S, Lee MS, Lee H, Han JW, Lee J, Lee JB. Enzyme-driven Hasselback-like DNA-based inorganic superstructures. Adv Funct Mater. 2017;27:1704213.

    Article 

    Google Scholar
     

  • Bai XC, Martin TG, Scheres SH, Dietz H. Cryo-EM construction of a 3D DNA-origami object. Proc Natl Acad Sci USA. 2012;109:20012–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aksel T, Yu Z, Cheng Y, Douglas SM. Molecular goniometers for single-particle cryo-electron microscopy of DNA-binding proteins. Nat Biotechnol. 2021;39:378–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Alnabati E, Aderinwale TW, Maddhuri Venkata Subramaniya SR, Terashi G, Kihara D. Detecting protein and DNA/RNA buildings in cryo-EM maps of intermediate decision utilizing deep studying. Nat Commun. 2021;12:2302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo J, Aksimentiev A. In situ construction and dynamics of DNA origami decided via molecular dynamics simulations. Proc Natl Acad Sci USA. 2013;110:20099–104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee C, Lee JY, Kim DN. Polymorphic design of DNA origami buildings via mechanical management of modular parts. Nat Commun. 2017;8:2067.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snodin BEK, Schreck JS, Romano F, Louis AA, Doye JPK. Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res. 2019;47:1585–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snodin BE, Romano F, Rovigatti L, Ouldridge TE, Louis AA, Doye JP. Direct simulation of the self-assembly of a small DNA origami. ACS Nano. 2016;10:1724–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khara DC, Schreck JS, Tomov TE, Berger Y, Ouldridge TE, Doye JPK, Nir ED. DNA bipedal motor strolling dynamics: an experimental and theoretical examine of the dependency on step measurement. Nucleic Acids Res. 2018;46:1553–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poppleton E, Romero R, Mallya A, Rovigatti L, Šulc P. OxDNA.org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures. Nucleic Acids Res. 2021;49:W491-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livolant F, Levelut AM, Doucet J, Benoit JP. The extremely concentrated liquid-crystalline part of DNA is columnar hexagonal. Nature. 1989;339:724–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments